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ABSTRACT

An object-based verification methodology for the NSSL Experimental Warn-on-Forecast System for en-

sembles (NEWS-e) has been developed and applied to 32 cases between December 2015 and June 2017.

NEWS-e forecast objects of composite reflectivity and 30-min updraft helicity swaths are matched to cor-

responding reflectivity and rotation track objects in Multi-Radar Multi-Sensor system data on space and time

scales typical of a National Weather Service warning. Object matching allows contingency-table-based ver-

ification statistics to be used to establish baseline performance metrics for NEWS-e thunderstorm and me-

socyclone forecasts. NEWS-e critical success index (CSI) scores of reflectivity (updraft helicity) forecasts

decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 h of forecast time. CSI scores decrease through the

forecast period, indicating that errors do not saturate during the 3-h forecast. Lower verification scores for

rotation track forecasts are primarily a result of a high-frequency bias. Comparison of different system

configurations used in 2016 and 2017 shows an increase in skill for 2017 reflectivity forecasts, attributable

mainly to improvements in the forecast initial conditions. A small decrease in skill in 2017 rotation track

forecasts is likely a result of sample differences between 2016 and 2017. Although large case-to-case variation

is present, evidence is found that NEWS-e forecast skill improves with increasing object size and intensity.

1. Introduction

NOAA’s Warn-on-Forecast (WoF) project is tasked

with producing probabilistic, short-term O(0–3)-h

guidance for thunderstorm hazards (Stensrud et al. 2009,

2013). In recent years, prototype WoF systems have

demonstrated an ability to produce accurate ensemble

forecasts in case studies of tornado-producing mesocy-

clones (e.g., Dawson et al. 2012; Yussouf et al. 2013,

2015; Supinie et al. 2017), severe hail (Snook et al. 2016;

Labriola et al. 2017), and flash flooding (Yussouf et al.

2016). One system, the NSSL Experimental Warn-on-

Forecast System for ensembles (NEWS-e), has provided

ensemble forecasts in real time during the springs of 2016

and 2017 (Wheatley et al. 2015; Jones et al. 2016). In 2016

and 2017, NEWS-e forecasts were issued up to 17 times

daily at 30-min intervals for a 750km 3 750km domain

where severe thunderstorms were expected. The large

amount of forecast data produced during these real-

time cases makes subjective verification, which has

typically been employed for case studies, difficult and

motivates the development of automated verification

techniques for WoF guidance.

Automating verification of WoF guidance for thun-

derstorm hazards presents several challenges. First, fore-

casts are issued at convection-allowing scales, typically

with ;3-km horizontal grid spacing, which requires the

use of spatial verification methods (e.g., Gilleland et al.

2009, 2010) to avoid double penalties in point verification

metrics associated with small displacement errors (Wilks

2011). Second, WoF is interested in predicting localized,
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rare events occurring in convective storms. These events

occur infrequently compared to quantities typically used

in model verification, such as precipitation, even during

widespread severe weather outbreaks (e.g., Yussouf et al.

2015). Finally, phenomena such as mesocyclones are not

fully sampled by conventional observations, which re-

quires the development of verification datasets from im-

perfect proxies of thunderstorm hazards (Sobash et al.

2011; Skinner et al. 2016; Sobash et al. 2016a,b; Dawson

et al. 2017).

Verification techniques based on object identification

and matching (e.g., Davis et al. 2006a,b; Ebert andGallus

2009) are appealing for overcoming the challenges asso-

ciated with the verification ofWoF guidance. Object-based

methods are designed to be applicable to noncontinuous

and nontraditional features of interest (Davis et al. 2006a).

Additionally, object identification and matching algo-

rithms are adaptable to a variety of user needs. For ex-

ample, objects may bematched according to user-defined

total interest values (Davis et al. 2006a,b) and objects

derived from different input fields can be used in verifi-

cation provided they are consistently defined to isolate

features of interest (Wolff et al. 2014). Finally, object-

based methods provide extensive diagnostic information

about forecast and observed objects, allowing specific

error sources in forecasts to be quantified. These advan-

tages have resulted in the extensive use of object-based

methods for verification of convection-allowing model

forecasts. Recent examples include the verification of

quantitative precipitation estimates (Gallus 2010;Hitchens

et al. 2012; Johnson and Wang 2012; Duda and Gallus

2013; Johnson and Wang 2013; Johnson et al. 2013; Clark

et al. 2014; Schwartz et al. 2017), as well as specific fea-

tures in radar (Burghardt et al. 2014; Pinto et al. 2015; Cai

andDumais 2015; Skinner et al. 2016; Sobash et al. 2016b;

Burlingame et al. 2017; Jones et al. 2018), satellite (Griffin

et al. 2017a,b), or damage (Clark et al. 2012, 2013;

Stratman and Brewster 2017) proxies.

A final complication specific to the verification of WoF

guidance is that accurate forecasts are needed on spatial

and temporal scales typical of thunderstorm warning

products issued by the National Weather Service. These

small time and space scales limit the utility of local storm

reports as a verification dataset (Sobash et al. 2011,

2016a,b) owing to errors in the timing, location, and

reporting frequency of severe weather (e.g., Brooks

et al. 2003; Doswell et al. 2005; Trapp et al. 2006). In

contrast, proxies from Doppler radar observations can

be matched to model output with minimal errors in time

and space. Additionally, radar data can be used to verify

WoF forecasts in real time, providing forecasters with

rapidly updating measures of forecast performance.

These attributes make radar proxies an attractive option

for the verification of short-term forecasts of convective

storm hazards (Yussouf et al. 2015; Skinner et al. 2016;

Dawson et al. 2017).

This study adapts the object-based mesocyclone ver-

ification methodology developed by Skinner et al.

(2016) for application to NEWS-e reflectivity and me-

socyclone forecasts during 20161 and 2017. Verification

statistics from 32 total cases are used to establish a

baseline of skill for NEWS-e forecasts of general and

severe thunderstorms. Beyond baseline verification sta-

tistics aggregated across all cases, forecast skill is com-

pared for different cases, forecast initialization times, and

object diagnostic properties in order to quantify system

performance for differing storm modes and mesoscale

environments. To the authors’ knowledge, this study is

the first examination of the skill of Warn-on-Forecast

guidance across many cases spanning a variety of storm

modes and mesoscale environments.

An object identification and matching strategy for

NEWS-e general and severe thunderstorm forecasts is

presented in section 2. Object-based verification met-

rics and diagnostic properties for 2016 and 2017

NEWS-e composite reflectivity and rotation track

forecasts are presented in section 3, including com-

parisons between different cases, initialization times,

and system configurations. Conclusions, limitations,

and recommendations for future research are provided

in section 4.

2. Methodology

a. Description of the forecast dataset

The NEWS-e is an on-demand, ensemble data as-

similation and prediction system nested within theHigh-

Resolution Rapid Refresh Ensemble (HRRRE; Dowell

et al. 2016). NEWS-e comprises an ensemble of 36WRF-

ARW (Skamarock et al. 2008) members with diverse

physical parameterizations (Table 1; Wheatley et al.

2015) run over a 750 km 3 750 km domain with 3-km

horizontal grid spacing (Fig. 1).Analyses are initialized at

1800 UTC daily with the initial and boundary conditions

provided by the HRRRE (Fig. 2) and the domain loca-

tion determined through collaboration with the Storm

Prediction Center or as part of the Hazardous Weather

Testbed Spring Forecast Experiment (Kain et al. 2003;

Gallo et al. 2017). Following initialization, analyses are

produced every 15min via assimilation of satellite column-

integrated liquid or ice water path (Minnis et al. 2011;

1 A single case from 23 December 2015 is run using the 2016

system configuration and is considered part of the 2016 dataset.
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Jones and Stensrud 2015; Jones et al. 2016), WSR-88D

radar reflectivity and radial velocity data, and surface

observations using an ensemble Kalman filter (EnKF).2

Beginning at 1900 UTC, 18-member forecasts with a

duration of 180 (90) min are issued at the top (bottom) of

each hour until 0300 UTC (Fig. 2).

As both NEWS-e and HRRRE are experimental

systems being actively developed, several configuration

changes were introduced between 2016 and 2017

(Table 2). Differences can be divided into changes in

model configuration, changes in HRRRE initial and

boundary conditions, and changes in observation pro-

cessing and assimilation. Model configuration changes

from 2016 to 2017 include an upgrade fromWRF-ARW

version 3.6.1 to 3.8.1 and changing the microphysical

parameterization from Thompson (Thompson et al. 2008)

to the NSSL two-moment scheme (Mansell et al. 2010),

which is expected to better represent storm-scale micro-

physical processes in supercells (Dawson et al. 2010,

2014). Changes to the HRRRE configuration include an

expansion of the forecast domain (2017 version shown in

Fig. 1), introduction of EnKF-based hourly assimila-

tion of radar reflectivity data, and changes to the obser-

vation localization and posterior inflation methodologies

(Ladwig et al. 2018). Additionally, 2017 initial condi-

tions for NEWS-e were taken from a 1-h, 36-member

HRRRE forecast initialized at 1700 UTC that provided

each NEWS-e analysis member with a unique set of

initial conditions. NEWS-e boundary conditions during

2017 were taken from a 9-member HRRRE forecast

issued at 1500 UTC and repeated four times to populate

the 36-member NEWS-e ensemble. In 2016, NEWS-e

initial and boundary conditions were provided by a 3-h,

18-member HRRRE forecast initialized at 1500 UTC

and identical initial and boundary conditions were used

for 18 pairs of NEWS-e members. Ensemble spread

across these member pairs was produced through di-

versity in the physics options (Table 1). Finally, as-

similation of Automated Surface Observing Station

(ASOS) observations was performed for 2017 NEWS-e

cases 15min past the top of each hour and the

methodology for creating Multi-Radar Multi-Sensor

(MRMS; Smith et al. 2016) superobservations of radar

reflectivity data was changed from nearest-neighbor

to Cressman (Cressman 1959) interpolation. Addi-

tional background and details of the NEWS-e system

FIG. 1. Example NEWS-e domain from 16 May 2017. The map

shown corresponds to the HRRRE domain, with the nested

NEWS-e domain shaded green. WSR-88D sites whose data are

assimilated into NEWS-e are marked by blue dots with 150-km

range rings drawn in gray.

TABLE 1. Physical parameterization options for NEWS-e fore-

cast members during 2016 and 2017 (adapted from Wheatley et al.

2015, their Table 2). Planetary boundary layer (PBL) options include

the Yonsei University (YSU), Mellor–Yamada–Janjić (MYJ), and

Mellor–Yamada–Nakanashi–Niino (MYNN) schemes, which are

paired with either Dudhia and Rapid Radiative Transfer Model

(RRTM) or the Rapid Radiative Transfer Model for GCMs

(RRTMG) parameterizations for shortwave and longwave radiation.

All members utilize the RAP land surface parameterization. Physics

options for NEWS-e analysis members 19–36 are repeated (e.g.,

member 19 would have the same options as member 1).

Member PBL

Shortwave

radiation

Longwave

radiation

1 YSU Dudhia RRTM

2 YSU RRTMG RRTMG

3 MYJ Dudhia RRTM

4 MYJ RRTMG RRTMG

5 MYNN Dudhia RRTM

6 MYNN RRTMG RRTMG

7 YSU Dudhia RRTM

8 YSU RRTMG RRTMG

9 MYJ Dudhia RRTM

10 MYJ RRTMG RRTMG

11 MYNN Dudhia RRTM

12 MYNN RRTMG RRTMG

13 YSU Dudhia RRTM

14 YSU RRTMG RRTMG

15 MYJ Dudhia RRTM

16 MYJ RRTMG RRTMG

17 MYNN Dudhia RRTM

18 MYNN RRTMG RRTMG

2The specific EnKF technique is the ensemble adjustment Kal-

man filter (Anderson 2001) included in the Data Assimilation

Research Testbed (DART; Anderson and Collins 2007; Anderson

et al. 2009) software. For simplicity, themore general termEnKF is

used for the remainder of this manuscript.
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configuration are available in Wheatley et al. (2015) and

Jones et al. (2016).

NEWS-e forecasts of composite reflectivity and up-

draft helicity (Kain et al. 2008) in the 2–5- and 0–2-km

layers above ground level (AGL) are examined in this

study. These products were selected to test NEWS-e

skill in forecasting all thunderstorms (composite re-

flectivity) and severe thunderstorms (updraft helicity).

Examination of updraft helicity calculated over differ-

ent vertical layers is used to determine if NEWS-e can

accurately identify storms producing low-level mesocy-

clones, which have been found to be the best proxy for

tornado occurrence (Trapp et al. 2005). Updraft helicity

swaths aggregated over a 30-min period centered on

each 5-minNEWS-e forecast output time are used as the

final mesocyclone forecast product.

b. Description of the verification dataset

Verification of NEWS-e forecasts requires proxies for

thunderstorm and mesocyclone occurrence to be derived

from WSR-88D data. These proxies are developed using

output from the MRMS system, which provides com-

posite WSR-88D observations across the continental

United States in real time (Smith et al. 2016).

As composite reflectivity observations are available

through MRMS, they are an obvious choice for verifica-

tion of NEWS-e composite reflectivity forecasts. How-

ever, even though the same field is available in both the

forecast and verification datasets, it is not an identical,

‘‘apples to apples’’ comparison. Differences between the

simulated and observed composite reflectivity will arise

through themodelmicrophysical parameterization, radar

sampling differences, and interpolation of radar data to

the model grid. As a result of these differences, simulated

and observed composite reflectivities are treated as dif-

ferent quantities in determining thresholds used for ob-

ject identification (see section 2c).

The verification dataset for mesocyclone forecasts is

developed using rotation tracks derived from MRMS

azimuthal wind shear data (Miller et al. 2013). Specifi-

cally, maximum range-corrected MRMS cyclonic azi-

muthal wind shear (Smith and Elmore 2004; Newman

et al. 2013; Mahalik et al. 2016) in the 0–2- and 2–5-km

layers AGL is calculated every 5min over the NEWS-e

domain. Following quality control and interpolation

onto the NEWS-e grid, these azimuthal wind shear data

are aggregated to produce 30-min rotation tracks for

verification of NEWS-e updraft helicity swaths.

A challenge in using azimuthal wind shear rotation

tracks as a verification dataset is that spurious observa-

tions for rarely occurring phenomena, such as mesocy-

clones, can have a large impact on verification metrics.

Therefore, extensive quality control is applied to the

MRMS azimuthal wind shear fields to mitigate the im-

pact of erroneous observations. Initial quality control is

applied prior to the calculation of the azimuthal wind

shear, with nonmeteorological returns removed by a

neural net trained using polarimetric data (Lakshmanan

et al. 2014). Radial velocity data are dealiased using a

modified method of Jing and Weiner (1993) that in-

corporates near-storm-environment soundings from the

Rapid Refresh (RAP) model. MRMS azimuthal wind

FIG. 2. Schematic of the NEWS-e system configuration for 2017.
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shear is then calculated only where the quality con-

trolled reflectivity is greater than 20dBZ and blended

onto a grid with 0.018 (2016) or 0.0058 (2017) latitude–
longitude grid spacing. Interpolation of azimuthal wind

shear data onto the NEWS-e grid is performed using a

Cressman analysis scheme with a 3-km radius of influ-

ence. To be included in the objective analysis, azimuthal

wind shear data must be cyclonic3 and occur within

20km of at least eight MRMS composite reflectivity

observations greater than 45dBZ. At least four azi-

muthal wind shear observations must meet these criteria

for the grid box to be retained in the final analysis. The

criteria for being retained in the objective analysis of

azimuthal wind shear field are stricter than in past studies

(Miller et al. 2013) and have been chosen to minimize

spurious values in the output. Finally, regions less than

5km or greater than 150km from the nearest WSR-88D

site are removed to mitigate range-related impacts.

c. Object identification

The methodology for object identification in com-

posite reflectivity or rotation track fields is adapted from

the Method for Object-Based Diagnostic Evaluation

(MODE) software (Davis et al. 2006a,b) available in

the Model Evaluation Tools provided by the National

Center for Atmospheric Research. Thunderstorms and

mesocyclones are typically sparse, contiguous maxima

in both forecast and observation fields, so simple in-

tensity thresholds are used to define object boundaries.

However, defining these thresholds is complicated ow-

ing to differences in the forecast and verification fields.

For example, values that best discriminate mesocy-

clones in azimuthal wind shear data will be different

from the best discriminators in updraft helicity data. To

define intensity thresholds that can consistently identify

objects in different fields, we assume that a perfect

forecast should produce an identical areal footprint in

both the forecast and verification fields. This assumption

allows percentile thresholds (e.g., Mittermaier and

Roberts 2010; Dawson et al. 2017) to be used for object

identification.

Percentile thresholds are determined using climatol-

ogies of forecast and verification fields (Sobash et al.

2016a). These climatologies are sensitive to changes in

the system configuration, so separate climatologies are

constructed for the 2016 and 2017 cases (Fig. 3). Each

climatology is constructed by aggregating nonzero

gridpoint values greater than the domain-wide 99th

percentile from each output time a NEWS-e forecast or

interpolated MRMS field is available. These extreme

percentile values are used to match thresholds in the

forecast and verification fields. The 99.95th percentile

value is chosen as a threshold for rotation track objects,

which corresponds to 2–5-km updraft helicity and azi-

muthal wind shear values between 50 and 65m2 s22 and

between 0.0035 and 0.005 s21, respectively. These up-

draft helicity values are similar to intensity thresholds

used for mesocyclone identification in prior studies (e.g.,

Kain et al. 2008; Clark et al. 2012; Dawson et al. 2017).

Despite their general similarities, clear differences in

the climatologies of updraft helicity and azimuthal wind

shear are present between 2016 and 2017 (Figs. 3b,c).

These differences are attributable to changes in model

configuration and the relatively small sample of cases,

which results in different yearly distributions of storm

mode and intensity (Tables 3 and 4). As updraft helicity

is an integrated product of vertical velocity and vertical

vorticity, it is sensitive to changes in the magnitude or

alignment of the two input fields. Comparison of cases

run using both Thompson and NSSL two-moment mi-

crophysics has revealed that slightly higher values of

updraft helicity are produced by the NSSL two-moment

scheme (not shown). However, comparison of storm

mode, highest SPC risk, and reported tornadoes be-

tween 2016 and 2017 cases (Tables 3 and 4) indicates

that the 2016 cases include more supercells, which are

expected to be associated with higher updraft helicities.

TABLE 2. Changes in the NEWS-e system configuration between 2016 and 2017. Additional changes to the HRRRE configuration are

discussed in section 2a.

2016 2017

WRF-ARW version 3.6.1 3.8.1

Microphysics Thompson NSSL two-moment scheme

Initial conditions 3-h HRRRE 1500 UTC forecast

(18 members)

1-h HRRRE 1700 UTC forecast

(36 members)

Boundary conditions HRRRE 1500 UTC forecast

(18 members)

HRRRE 1500 UTC forecast

(9 members)

ASOS assimilation No Hourly

Reflectivity superobservations Nearest-neighbor interpolation Cressman objective analysis

3 NEWS-e has produced qualitatively accurate mesoanticyclone

forecasts (Jones and Nixon 2017); however, only mesocyclone

forecasts are considered in this study.
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The larger proportion of supercell cases in 2016 is likely

additionally reflected in a higher percentile threshold

value of MRMS 2–5-km azimuthal wind shear (Fig. 3b).4

A composite reflectivity threshold of 45 dBZ is used

for NEWS-e output for both 2016 and 2017, and the

MRMS threshold is set according to the corresponding

percentile (Fig. 3a). As with rotation track output, var-

iation in the composite reflectivity climatology is ap-

parent between 2016 and 2017. Though the MRMS

climatology is slightly lower in 2017 than 2016, most of

the differences between the two years are attributable to

changes in NEWS-e configuration. Examination of ver-

tical profiles of simulated reflectivity between cases run

with both the Thompson and NSSL two-moment micro-

physics reveals that the Thompson scheme produces

stronger values of simulated reflectivity above roughly

7 km (Lappin et al. 2018), resulting in much larger

maximumNEWS-e composite reflectivity values in 2016

than 2017. While these differences are most pronounced

for NEWS-e values above ;50dBZ, the MRMS per-

centile corresponding to 45dBZ is similar for both 2016

(99.292%) and 2017 (99.374%).

The changes in climatologies from year to year illus-

trate difficulties in establishing an adaptable object

identification methodology for proxy variables such as

composite reflectivity or rotation tracks. The large

numbers of tunable parameters, from quality control of

observations through object identification and match-

ing, are a limitation of object-based verification tech-

niques. Thresholds used in object identification and

matching in this study have been determined through

trial and error and have been consistently applied in

order to compare between different fields and system

configurations. Changes to thresholds used for object

identification result in different numerical values of

verification metrics, but little qualitative change in

comparisons between 2016 and 2017 (see the appendix).

Prior to matching the forecast and verification objects, a

final series of quality control measures are applied in order

to minimize the retention of spurious objects (Fig. 4). A

size threshold of 100 (144)km2 is applied to rotation track

(composite reflectivity) objects. Additionally, rotation

track objects are subjected to a continuity threshold of

15min, which requires tracks to consist of input from at

least three separate times. Finally, objects with aminimum

spatial displacement of less than 10km are merged into a

single object.

d. Object matching and verification

Objects in the forecast and verification fields, as well

as their associated diagnostic properties, are extracted

using the Scikit-image python library (Van der Walt

et al. 2014). Forecast and verification objects are then

matched according to a total interest score (Davis et al.

2006a,b), adapted from Skinner et al. (2016), using the

centroid and minimum spatial displacement and time

displacement between object pairs as inputs:

TI5

�
(cd

max
2 cd)

cd
max

�
1

�
(md

max
2md)

md
max

�

2

8><
>:

9>=
>;
�
(t
max

2 t)

t
max

�
,

(1)

where TI is the total interest score, cd is the centroid

distance between an object pair, md is the minimum

distance between an object pair, and t is the time

FIG. 3. Climatologies of forecast and verification datasets for the 2016 (blue) and 2017 (orange) cases. Scatterplots show the 99.1–99.98

percentile values for (a) composite reflectivity (dBZ), (b) 2–5-km updraft helicity (m2 s22) or azimuthal wind shear (AWS; s21), and (c)

0–2-km updraft helicity or AWS. Thresholds used for object identification are annotated.

4MRMS azimuthal wind shear results were merged onto a

coarser grid in 2016 than 2017; however, differences attributable to

MRMS grid spacing are largely smoothed out during interpolation

to the NEWS-e grid.

1230 WEATHER AND FORECAST ING VOLUME 33



difference between an object pair. The max subscript

indicates the maximum allowable threshold for object

matching and is set to 40km for the centroid and mini-

mum distances and 25min for time displacement. Total

interest scores are calculated for each possible pair of

forecast and verification objects, with matched pairs

requiring a total interest score greater than 0.2, as in

Skinner et al. (2016). In cases where multiple forecast

objects are matched to a single verification object, only

the forecast object with the highest total interest is re-

tained as a match, while other objects are reclassified

as unmatched.

Calculation of the total interest for this study uses

fewer input properties than are typically used inMODE.

This simplification is made possible by the generally

sparse and contiguous objects in both forecast and ver-

ification fields, which allows representative object

matching using a small number of input measures

(Schwartz et al. 2017). The mean of the two measures of

spatial displacement is used as a single input to the final

total interest in order to allow matching of objects that

may largely overlap but have centroid displacements

greater than the allowable threshold, which often occurs

for reflectivity objects associated with mesoscale

TABLE 4. As in Table 3, but for 2017 cases.

Date

Forecast

period (UTC) Satellite DA

SPC

outlook

No. of

tornado reports

Primary

states affected

Primary

storm mode

1 May 1900–0300 Yes Enhanced 6 NY, PA Linear

2 May 1900–0300 Yes Slight 0 OK, TX Supercell

3 May 1900–0300 Yes Enhanced 2 LA, TX Linear

4 May 1900–0300 Yes Marginal 11 GA, SC Mixed

8 May 1900–0300 Yes Slight 1 CO, NM Supercell

9 Maya 1900–0300 Yes Slight 6 NM, TX Supercell

11 May 1900–0300 Yes Enhanced 11 AR, LA, OK, TX Mixed

15 May 1900–0300 Yes Slight 0 CO, KS, NE Mixed

16 Maya 1900–0300 Yes Moderate 26 KS, OK, TX Supercell

17 Maya 1900–0300 Yes Enhanced 17 IA, IL, MN, WI Mixed

18 Maya 1900–0300 Yes High 34 KS, OK, TX Supercell

19 May 1900–0300 Yes Enhanced 4 OK, TX Mixed

22 May 1900–0300 Yes Slight 0 NM, TX Supercell

23 Maya 1900–0300 Yes Slight 0 TX Mixed

25 May 1900–0300 Yes Slight 2 CO, KS Supercell

26 May 1900–0300 Yes Slight 8 CO, KS Supercell

27 Maya 1900–0300 Yes Moderate 8 AR, MO, OK Mixed

30 May 1900–0300 Yes Slight 1 MD, PA, VA Mixed

a Cases reproduced using Thompson microphysics.

TABLE 3. Summary of 2016 NEWS-e cases. For each date the available forecast period, satellite data availability (DA), maximum SPC

risk from the 1630 UTC outlook within the NEWS-e domain, number of SPC-archived tornado reports within the domain and forecast

period, primary states affected, and predominant storm mode are provided.

Date

Forecast

period (UTC) Satellite DA

SPC

outlook

No. of

tornado reports

Primary

states affected

Primary

storm mode

23 Dec 2015 1900–0100 No Moderate 24 AL, MS, TN Supercell

31 Mar 2016 1900–0130 No Enhanced 24 AL, MS, TN Mixed

10 Apr 2016 1900–0300 No Enhanced 0 OK, TX Linear

29 Apr 2016 1900–2330 No Slight 0 AL, MS Linear

7 May 2016 1900–0300 Yes Slight 15 CO, KS Mixed

8 May 2016 1900–0300 Yes Enhanced 9 KS, OK Supercell

9 May 2016 1900–0100 Yes Enhanced 16 AR, KS, OK Supercell

10 May 2016 1900–0300 Yes Enhanced 19 IL, IN, KY Mixed

16 May 2016 1900–0300 Yes Enhanced 10 OK, TX Linear

17 May 2016 1900–0300 Yes Enhanced 1 TX Mixed

22 May 2016 1900–0300 Yes Enhanced 38 KS, OK, TX Supercell

23 May 2016 1900–0300 Yes Enhanced 5 OK, TX Supercell

24 May 2016 1900–0300 Yes Enhanced 29 CO, KS, NE, OK Supercell

25 May 2016 1900–0300 Yes Slight 14 KS, OK Supercell
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convective systems. As with object identification thresh-

olds, verification scores are sensitive to the maximum

allowable offsets in space and time, but qualitative

comparisons between datasets remain similar (see the

appendix).

Object matching allows matched object pairs to be

classified as ‘‘hits,’’ unmatched forecast objects as ‘‘false

alarms,’’ and unmatched verification objects as ‘‘misses’’

(Fig. 4). These classifications allow the contingency-

table-based probability of detection (POD), false alarm

ratio (FAR), frequency bias (BIAS), and critical success

index (CSI) to be used to quantify the skill of NEWS-e

reflectivity andmesocyclone forecasts. Given that object

matching does not produce a quantity analogous to

correct negatives in the contingency table, verification

metrics are limited to those that consider only hits,

misses, and false alarms. Additionally, missed verifica-

tion objects are calculated as the residual of the number

of observed objects and the number of matched forecast

objects at each time step. This approach results in in-

frequent occurrences where observed objects are in-

correctly classified owing to forecast objects matched

across time steps.

A limitation to verifying NEWS-e forecasts using

contingency-table-based metrics is that they provide

deterministic measures of forecast quality. This de-

terministic verification framework does not provide a

measure of skill for probabilistic guidance, which is a

FIG. 4. Schematic depicting the object matching and verification process. Initial thresholded fields from the (a) forecast from a single

ensemblemember and (d) observations are subjected to size and continuity quality control thresholds prior to (b),(e) object identification.

(c) Forecast objects are matched to verification objects according to prescribed spatiotemporal displacement thresholds with matched

pairs being considered hits, unmatched forecast objects false alarms, and unmatched verification objects misses. This classification of

objects allows the (f) standard contingency-table metrics POD, FAR, BIAS, and CSI to be calculated to quantify forecast skill.
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fundamental aspect of the Warn-on-Forecast project

(Stensrud et al. 2009). Despite this limitation, contingency-

table metrics provide familiar and intuitive measures of

forecast skill that are attractive for producing an initial

baseline measure of forecast quality that can be com-

pared to probabilistic verification measures in future

research.

Beyond bulk contingency-table verification measures,

diagnostic features associated with objects allow specific

forecast errors to be identified (Wolff et al. 2014). Spe-

cifically, object area, maximum intensity, and centroid

displacement are used in this study to identify variations in

forecast skill for different stormmodes and intensities and

potential phase and storm motion biases, respectively.

3. Object-based verification of NEWS-e forecasts

a. Comparison of 2016 and 2017 composite
reflectivity forecasts

NEWS-e forecasts were produced for a total of

14 cases during 2016 and 18 cases during 2017 across a

variety of geographic locations, storm modes, and storm

environments (Tables 3 and 4). Variation in cases be-

tween years prevents direct comparison of the impacts

of the NEWS-e system configuration changes on fore-

cast skill; however, bulk verification metrics for the

two years can be qualitatively compared. Baselines of

NEWS-e composite reflectivity forecast skill for 2016

and 2017 have been produced by aggregating all object

hits, misses, and false alarms from each case and en-

semble member, then calculating the POD, FAR, BIAS,

and CSI at each available forecast time (Fig. 5).

The ability of rapidly cycling assimilation of radar and

satellite data to accurately initialize individual thun-

derstorms is evident in the verification metrics as a high

POD and low FAR in the NEWS-e composite reflec-

tivity forecasts (Figs. 5a,c). NEWS-e POD 20min into

the forecast is over 0.7 (0.8) for 2017 (2016), with cor-

responding false alarm ratios of approximately 0.4 for

both years. The initial bulk skill, as represented by CSI,

decreases with increasing forecast time, but does not

level off before the end of the forecast period indicating

that forecast errors do not saturate through 3h of fore-

cast time. The POD remains above the FAR for ap-

proximately 75min of forecast time for both 2016

and 2017.

Despite the generally skillful composite reflectivity

forecasts for both years, clear differences are apparent

between 2016 and 2017 (Fig. 5). A positive bias is pres-

ent during the first forecast hour for both years, but is

more pronounced in the 2016 forecasts. This positive

bias in 2016 forecasts results in a higher POD during the

first 30 forecast minutes, but 2017 forecasts have a higher

FIG. 5. Time series of object-based (a) POD, (b) BIAS, (c) FAR, and (d) CSI for composite reflectivity forecasts

from 2016 (blue) and 2017 (orange). Individual ensemble members are plotted with thin lines, and the ensemble

mean is shown in bold. Ensemble means are calculated as the mean of verification metrics from each ensemble

member. The first and last 20min of the forecast are masked so that only forecast times when objects could be

matched in time as well as space are considered. The total number of objects from each year is annotated.
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POD for all following times after biases between the

years become similar. Furthermore, 2017 forecasts

have a lower FAR through the duration of the forecast,

which combined with the higher POD at later forecast

times, results in higher CSI scores at all forecast times.

Examples of the composite reflectivity object distri-

bution from a single forecast with similar CSI scores to

the 2017 ensemble mean are provided in Fig. 6. These

‘‘paintball’’ plots illustrate the accuracy of a NEWS-e

reflectivity forecast with CSI scores similar to the yearly

mean, with most ensemble members correctly predict-

ing the position of thunderstorms within a developing

MCS along the Missouri and Arkansas border. In this

example, most of the forecast error is driven by missed

objects along the western extent of the domain in east-

ern Oklahoma. Although some ensemble members

correctly predict the locations of these thunderstorms,

many do not, particularly for developing convection

during the second hour of the forecast (Figs. 6c,d).

Several false alarm objects are also present, mainly in

southern Missouri and southeastern Oklahoma; how-

ever, these false alarm objects occur in only a few en-

semble members, resulting in low ensemble mean false

alarm ratios. Finally, phase errors are apparent in the

FIG. 6. Paintball plots of composite reflectivity objects (a) 30, (b) 60, (c) 90, and (d) 120min into forecasts

initialized at 0100 UTC 28 May 2017. Colored shading indicates NEWS-e member forecast objects, with different

colors assigned to each ensemble member, and dark gray shading showing observed objects. Regions shaded light

gray are less than 5 kmor greater than 150 km from the nearestWSR-88Dand are not considered in the verification.

Ensemble mean POD, FAR, BIAS, and CSI scores are provided in the top right of each panel.
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forecast of the MCS along the eastern Missouri and

Arkansas borders, with NEWS-e predictions lagging the

observed evolution 2h into the forecast (Fig. 6d). De-

spite these phase errors, many of the ensemble member

objects are classified as matches owing to minimum and

centroid distance displacements lower than the pre-

scribed thresholds. This example was selected to illus-

trate what a NEWS-e forecast that produces CSI values

roughly similar to the 2017 mean can look like. Many

combinations of POD, FAR, and BIAS can produce

similar CSI values and variation is observed between

cases, forecasts within a single case, and within the

evolution of a single forecast.5

Object contingency-table elements may be aggregated

across each day NEWS-e was run instead of forecast

output time to provide a measure of case-to-case varia-

tions in skill. These variations, as well as differences be-

tween 2016 and 2017 NEWS-e composite reflectivity

forecasts, are apparent comparing performance diagrams

(Roebber 2009) 60min into the forecast of each available

case (Fig. 7). With the exception of one outlier, the 2017

cases are more clustered, with ensemble mean CSI and

frequency bias values between roughly 0.3 and 0.6 and

between 0.75 and 1.5, respectively. The one outlier case,

2 May 2017, featured isolated storms that initiated after

0100 UTC, resulting in the fewest forecast and observed

reflectivity objects from either year. In contrast, more

case-to-case variation is present in the 2016 forecasts,

with CSI and BIAS values of approximately 0.2–0.5 and

0.5–2.0, respectively.

Changes in NEWS-e performance for different storm

modes and environments are examined by categorizing

each case according to themaximum SPC 1630UTC day

1 categorical risk within the NEWS-e domain and sub-

jectively determined primary stormmode (Tables 3 and 4).

SPC categorical risk provides an imperfect measure of

environmental favorability as it is influenced by storm

coverage as well as environment. However, categorical

risk does provide a measure of the likelihood of severe

weather for a given case, which allows NEWS-e skill to

be compared for cases with limited potential for severe

weather (e.g., 29 April 2016) to those with high potential

(e.g., 24 May 2016). Clear stratification of composite

FIG. 7. Performance diagrams (Roebber 2009) for 60-min composite reflectivity forecasts from each case during

(a) 2016 and (b) 2017. Diagonal (curved) lines in the diagram represent lines of constant BIAS (CSI). Small circles

indicate scores of individual ensemble members, and large circles represent the ensemble mean from each case.

Cases are numbered according to the legend provided below each plot and color coded according to the maximum

SPC risk in the NEWS-e domain and storm mode. The total number of objects identified for each case is provided

following each date in the legend.

5 At the time of writing, NEWS-e forecast graphics and verifi-

cation statistics from each case are archived online (www.nssl.noaa.

gov/projects/wof/news-e/realtime).
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reflectivity CSI scores by SPC categorical risk is not

apparent in either year but subtle variation is present in

2017, where an enhanced risk or higher was present for

six of the highest nine scoring cases and a slight risk or

lower for seven of the lowest nine scoring cases. No clear

differences in skill are apparent between cases classified

as supercellular or mixed/linear storm mode in either

2016 or 2017.

Temporal variation in NEWS-e composite reflectivity

forecasts is examined by aggregating objects across cases

for each hourly forecast initialization time (Fig. 8). A

decrease in BIAS and FAR with increasing forecast

initialization time is evident in both the 2016 and 2017

cases. These decreases are coupled with a decrease in

POD at later initialization times; however, this decrease

is smaller than the decreases in FAR, resulting in a net

FIG. 8. Time series of the object-based ensemble mean (a) POD, (b) FAR, (c) BIAS, and (d) CSI for composite

reflectivity forecasts aggregated for each forecast initialization hour between 2000 and 0200UTC. Scores from 2017

(2016) forecasts are plotted in orange (blue), and every other forecast is plotted using lighter, dashed lines in order

to improve readability.As in Fig. 5, the first and last 20min of each forecast aremasked. The total number of objects

for each forecast initialization hour is annotated in (a).
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increase in CSI. These changes with forecast initializa-

tion time likely arise in part through ensemble ‘‘spin up’’

of thunderstorms with cycled data assimilation. Initial-

ization times in the late afternoon coincide with themost

likely time of convection initiation (CI) and several data

assimilation cycles are required to produce an accu-

rate analysis of these thunderstorms in NEWS-e (e.g.,

Yussouf and Stensrud 2010). Additionally, the potential

for spurious convection in NEWS-e is highest during

these times owing to imbalances introduced during data

assimilation or the erroneous prediction of CI. The

combination of these two factors contributes to a higher

BIAS and FAR during earlier initialization times and the

decrease at later times indicates NEWS-e is producing a

more accurate analysis of most thunderstorms within the

domain. Additionally, less widespread CI during the

evening is likely responsible for the slight decrease in

POD with increasing forecast initialization time.

Though variation between the 2016 and 2017 verifi-

cation metrics is present for all different initialization

times, the largest differences are for forecasts initialized

at 2000 and 2100UTC (Fig. 8). The CSI of 2017 forecasts

at these times is notably higher, at times greater than 0.1,

than of the 2016 forecasts. We surmise that this im-

provement is likely primarily attributable to upgrades in

the HRRRE between 2016 and 2017, which include the

hourly ensemble assimilation of radar reflectivity ob-

servations and alterations to the observation localiza-

tion and posterior inflationmethodologies (Ladwig et al.

2018). These improvements provide NEWS-e forecasts

with an improved set of storm and mesoscale initial

conditions that translates to improved NEWS-e per-

formance for early forecast periods.

Beyond changes in skill during earlier forecasts, 2016

composite reflectivity forecasts generally have a higher

frequency bias than 2017 forecasts, particularly during the

first hour of each forecast (Fig. 8). This positive bias is

additionally evident in bulk (Fig. 5) and case-to-case

(Fig. 7) comparisons of 2016 and 2017 forecasts and is

primarily a function of the different microphysical pa-

rameterizations utilized in 2016 and 2017 (Table 2). The

sensitivity of frequency bias to microphysical parameteri-

zation is demonstrated by reproducing six cases from 2017

with an identical configuration except that Thompson6

microphysics is used in place of the NSSL two-moment

scheme. Cases rerun with Thompson microphysics all

exhibit higher frequency biases in 60-min composite

reflectivity forecasts than those run with NSSL two-

moment scheme (Fig. 9). Despite the consistent dif-

ferences in frequency bias, compensating variations in

POD and success ratio (12 FAR) occur between the two

sets of experiments, resulting in small and variable

changes to the CSI. Composite reflectivity objects are

identified in the Thompson experiments using the 2016

NEWS-e reflectivity climatology (Fig. 3). Since only cases

from 2017 were compared, biases will be impacted by

differences in the observed reflectivity climatology be-

tween 2016 and 2017. However, the increase in frequency

bias for the Thompson runs is exacerbated if either the

2016 or 2017 climatology is applied to both sets of ex-

periments (not shown) and the results match subjective

member-by-member comparisons between the two sets of

experiments, providing confidence that the two schemes

produce differing biases of thunderstorm coverage.

b. Comparison of 2016 and 2017 updraft helicity
forecasts

In general, object-based verification scores are lower

for mesocyclone forecasts than reflectivity forecasts

(Figs. 10 and 11). The CSI for NEWS-e 2–5-km updraft

helicity swath forecasts decreases from approximately

0.35–0.45 to 0.2 over the course of a 3-h forecast during

both 2016 and 2017, a reduction of about 0.1 from CSI

scores for composite reflectivity forecasts (Fig. 5). This

FIG. 9. As in Fig. 7, but for 60-min composite reflectivity fore-

casts from six cases in 2017 (orange) and the same six cases rerun

using Thompson microphysics (blue). The 2016 reflectivity clima-

tology was used to identify objects in the forecasts using Thompson

microphysics.

6 An updated, aerosol-aware version of the Thompson scheme

(Thompson and Eidhammer 2014) was used for these experiments,

which is different than the version used for the 2016 cases. The

impact of the changes within the Thompson scheme on NEWS-e

forecasts is not known and beyond the scope of this paper.
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reduction in CSI is primarily driven by a higher FAR in

updraft helicity forecasts and corresponds to a small

positive frequency bias at all forecast times. The positive

frequency bias and increased FAR for 2–5-km rotation

track objects indicate that NEWS-e overpredicted

midlevel mesocyclone development in thunderstorms in

both 2016 and 2017, especially given nearly unbiased

reflectivity forecasts following the first forecast hour

(Fig. 5). Despite generally lower scores than reflectivity

forecasts, the CSI of the rotation track forecasts de-

creases through the entirety of the 3-h forecast, sug-

gesting that forecast errors do not saturate during

the period.

Verification scores for NEWS-e 0–2-km updraft hel-

icity forecasts are generally similar, although slightly

lower, than scores for 2–5-km updraft helicity forecasts

FIG. 10. As in Fig. 5, but for 2–5-km updraft helicity forecasts.

FIG. 11. As in Fig. 5, but for 0–2-km updraft helicity forecasts.
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(Fig. 11). The number of rotation track objects in

the 0–2-km layer is about 5% (20%) lower in 2017

(2016), resulting in a smaller overprediction bias and

reduced POD and FAR. Though fewer low-level ro-

tation track objects are identified, the strong simi-

larities in verification scores are similar to the findings

of Sobash et al. (2016a) and suggest that NEWS-e

forecasts are generally not discriminating between

low- and midlevel mesocyclone development. This

lack of discrimination is consistent with prior studies

that have found that horizontal grid spacing of 1 km

or less is needed to resolve storm-scale processes re-

sponsible for low-level mesocyclogenesis (e.g., Potvin

and Flora 2015).

NEWS-e 2–5-km updraft helicity forecasts performed

slightly better in 2016 than 2017 during the first hour of

the forecast (Fig. 10), exhibiting both a higher POD and

lower FAR. However, there is large case-to-case vari-

ability in forecast performance at 60min for both 2016

and 2017 (Fig. 12), with CSI and BIAS values ranging

from less than 0.1 to greater than 0.4 and roughly 0.25 to

greater than 4.0, respectively. Similarly to composite

reflectivity forecasts, consistent variation of forecast skill

across different storm modes or SPC categorical risks is

not apparent. However, despite the lack of a strong re-

lationship with forecast skill, there are clear differences in

the case-to-case distribution of storm mode and cate-

gorical risk between 2016 and 2017, which suggests that

sample differences between the two years7 may contrib-

ute to bulk performance differences.

Comparison of 2–5-km updraft helicity swath forecast

verification metrics from the six cases reproduced using

the Thompson microphysics (Fig. 13) suggests variation

in skill between the 2016 and 2017 forecasts is attributable

to sampling differences. Changing the microphysical pa-

rameterization results in small, inconsistent changes to

POD, FAR, BIAS, and CSI across the six cases. Fur-

thermore, using the 2016 climatological threshold for

object identification results in poor scores and large

positive biases greater than 2.0 for all six cases, regardless

of microphysical parameterization. This reduction in skill

using the 2016 climatology confirms that changes in the

updraft helicity climatology between 2016 and 2017 are

primarily driven by differences in the observations, as

opposed to changes in the composite reflectivity clima-

tology, which are primarily driven by the microphysical

parameterization (Figs. 3 and 9).

In addition to case-to-case variations in the verification

scores for rotation track forecasts, some cases exhibit

FIG. 12. As in Fig. 7, but for 60-min 2–5-km updraft helicity forecasts.

7 Though large samples of individual forecast objects are avail-

able, many of these objects will be highly correlated owing to the

ensemble and high-frequency forecast output in NEWS-e. There-

fore, sample diversity is better represented by the number of dif-

ferent cases rather than the total number of objects.
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large differences between the performance of composite

reflectivity and 2–5-km updraft helicity forecasts (cf. Figs. 7

and 12). In these cases NEWS-e produces generally ac-

curate predictions of composite reflectivity objects, but

less skillful predictions of rotation tracks. Many cases

with the largest reductions in CSI (greater than 0.2) in

updraft helicity forecasts are characterized by pre-

dominantly mixed-mode or linear convection, and in-

clude 31 March 2016, 3 May 2017, 11 May 2017, 17 May

2017, and 23 May 2017. The reduced performance in ro-

tation track forecasts in these cases is typically attribut-

able to either underforecasts of mesocyclones embedded

in mesoscale convective systems or overforecasts of me-

socyclones in cellular convection. Examples of the two er-

ror sources are provided in Fig. 14, where, despite accurate

composite reflectivity forecasts, most ensemble members

miss mesocyclone development within an MCS in Iowa

(Fig. 14b) or dramatically overpredict mesocyclone devel-

opment within mixed-mode storms in Texas (Fig. 14d).

Similarly to composite reflectivity forecasts, cycled

data assimilation results in a reduction of the BIAS and

FAR, and an increase in CSI with later forecast initial-

ization times in mesocyclone forecasts (Fig. 15). Dif-

ferences between 2016 and 2017 are inconsistent and at

times highly variable across successive forecasts. How-

ever, it appears that 2017’s CSI is improved in the 2000

and 2100 UTC forecasts, though to a lesser extent than

the composite reflectivity forecasts. Additionally, CSI

scores for 2016 are higher during the first 30–90min of

each forecast from 2200 UTC onward, indicating the

improved skill in the first hour of bulk comparisons

(Fig. 10) is consistent across most initialization times.

Finally, 2016 forecasts initialized at 0200 UTC perform

much better than 2017 forecasts. This improvement is

not present in the 0200 UTC reflectivity forecasts

(Fig. 8) and the reasons for the improvement are not

clear. However, 4 of the 14 cases from 2016 did not issue

forecasts at 0200 UTC (Table 3), which results in far

fewer rotation track objects in 2016 than 2017 and will

amplify the sampling differences between the years.

c. Comparison of object diagnostic properties
between 2016 and 2017

Variation of NEWS-e performance with storm char-

acteristics is examined by comparing differences be-

tween the size and maximum intensity of the matched

and false alarm forecast objects. Differences between

these diagnostic properties are visualized using scatter-

plots of composite reflectivity and rotation track objects

aggregated from 60-min NEWS-e forecasts (Fig. 16).

Kernel density estimation (KDE) is then used similarly

to the approach employed by Anderson-Frey et al.

(2016) to highlight regions within the size and maximum

intensity parameter space where object properties occur

most often. The KDE technique implemented here

applies a Gaussian kernel with a smoothing bandwidth

determined from a general optimization algorithm

(Scott 1992) to each point within the parameter space.

Kernels for each point are summed to provide ameasure

of the density of points and quantify the differences

between the distribution of false alarms and matched

objects.

Comparison of the size and maximum intensity of

NEWS-e reflectivity objects reveals that larger andmore

intense objects were more likely to be matched to ob-

servations in both the 2016 and 2017 forecasts (Figs. 16a,b).

This result is unsurprising as larger thunderstorms will

be better resolved by the 3-km grid spacing employed by

NEWS-e and more Doppler radar and satellite obser-

vations will be available for assimilation, likely resulting

in a more accurate ensemble analysis. In addition to the

differences between the size and intensity of matched

and false alarm objects, differences between the object

characteristics in 2016 and 2017 are apparent. As in the

model climatologies (Fig. 3), much higher maximum

composite reflectivity values are produced by the

Thompson microphysical parameterization, with the

strongest storms exhibiting values between 70 and

76dBZ, compared to 58–64dBZ in NSSL two-moment

forecasts. Additionally, a small secondary peak in the

2017 object maximum intensity distribution is apparent

at roughly 46 dBZ (Fig. 16b). This peak is produced by

FIG. 13. As in Fig. 9, but for 2–5-km updraft helicity forecasts.

Note that the 2–5-km updraft helicity climatology for 2017 is used

to define the rotation track objects in both the Thompson and

NSSL two-moment experiments.
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misidentified objects within the stratiform region of

mesoscale convective systems. These spurious objects

represent less than 5% of the total number of re-

flectivity objects in the 60-min forecasts and will min-

imally impact the verification scores, but their presence

in the NSSL two-moment forecasts provides another

example of the challenges in identifying appropriate

thresholds for object-based comparisons of different

system configurations.

Similarly to reflectivity objects, larger and more in-

tense rotation track objects were more likely to be

matched in the 2016 forecasts (Fig. 16c), but smaller

differences between the distribution of matched and

false alarm objects are present in the 2017 forecasts

(Fig. 16d). However, if the 2017 cases are split according

to the subjectively defined primary storm mode

(Table 4), supercell cases behave similarly to the 2016

forecasts, with larger and more intense objects being

more likely to bematched to the observations (Fig. 16e).

In addition, the ratio ofmatched to false alarm objects in

supercell cases from 2017 is similar to the ratio from the

2016 cases. Rotation track objects from linear or mixed-

mode cases in 2017 are typically larger than supercell

cases and have a lower match to false alarm ratio

FIG. 14. As in Fig. 6, but for (left) composite reflectivity and (right) rotation track objects 60min into the forecasts

initialized at 2300UTC (a),(b) 17May and (c),(d) 23May 2017. POD, FAR, BIAS, and CSI scores for each forecast

are provided in the bottom left of each panel. Note that some forecast rotation track objects in (d) are matched to

observed objects at different times, resulting in FAR of less than 1.0 despite no observed objects being present at

the forecast time plotted.

OCTOBER 2018 SK INNER ET AL . 1241



(Fig. 16f). Larger linear and mixed-mode objects likely

arise through a combination of broad UH swaths along

the gust front ofmesoscale convective systems and faster

storm motion. The apparent dependence of perfor-

mance on stormmode provides further evidence that the

increased skill during the first hour of the updraft hel-

icity forecasts during 2016 is a product of sampling dif-

ferences between the years rather than changes in model

configuration.

Finally, centroid displacement in matched objects is

examined to identify potential positive storm motion

biases, which have been noted in previous prototype

WoF forecasts (Yussouf et al. 2013;Wheatley et al. 2015;

Yussouf et al. 2015; Skinner et al. 2016). In contrast with

prior studies that found consistent, positive biases in

storm speed for forecasts of discrete supercells, large

variation in the centroid displacement of matched ob-

jects is present in 30-min NEWS-e forecasts of com-

posite reflectivity and updraft helicity (Fig. 17). Much of

this variation results from the inclusion of several cases

with varying storm modes and coverage. Despite the

larger total variation in centroid displacement, north

FIG. 15. As in Fig. 8, but for 2–5-km updraft helicity forecasts.
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FIG. 16. Scatterplots of the parameter space of the object area andmaximum intensity for 60-minNEWS-e forecasts

of (a),(b) composite reflectivity (dBZ) and (c)–(f) 2–5-km updraft helicity (m2 s22) during 2016 in (a) and (c), 2017 in

(b) and (d), and 2017 cases classified as supercells in (e) or mixed/linear mode in (f). Matched objects are plotted in

orange, and false alarm objects are in blue with the total number of objects in each category listed at the bottom right.

KDE contours of the 95, 97.5, 99, and 99.9 percentile values of each distribution are overlain to illustrate differences

between the matched and false alarm distributions. Every third reflectivity object is plotted to improve clarity.
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and eastward biases in centroid displacement, consistent

with a positive bias in storm speed, are present in the

2016 reflectivity forecasts and updraft helicity forecasts

from both 2016 and 2017. Though this apparent storm

motion bias is consistent with past results and the sub-

jective assessment of NEWS-e forecasts, centroid dis-

placement biases can also arise through differences in

simulated storm structure (Potvin et al. 2018). For ex-

ample, changes to the reflectivity or rotation track object

size with different physical parameterizations will in-

duce changes to the object centroid positions and dis-

placement from an observed object. As variation in the

distribution of object sizes is noted between 2016 and

2017 for both reflectivity and rotation track objects

(Fig. 14), it is unclear to what extent biases in centroid

displacement are attributable to errors in storm motion

or the storm and rotation track structure.

4. Conclusions and future work

An object-based strategy for verifying Warn-on-

Forecast guidance has been presented and applied to

32 cases from 2016 and 2017. Composite reflectivity and

updraft helicity swath forecasts from the NSSL Experi-

mental Warn-on-Forecast System for ensembles are

verified against corresponding observations in Multi-

Radar Multi-Sensor products on time and space scales

typical of National Weather Service warnings. Forecast

and verification objects are classified as matched pairs,

false alarms, and misses (Fig. 4), allowing contingency-

table-based metrics to be used to establish a baseline of

WoF performance for general and severe thunder-

storms. Bulk verification scores from NEWS-e forecasts

support the following conclusions:

d Percentile thresholds derived from model climatol-

ogies provide a method for prescribing appropriate

object identification thresholds to different forecast

and verification fields, for example, rotation tracks

derived from predicted updraft helicity and observed

azimuthal wind shear (Fig. 3).
d Cycled assimilation of Doppler radar and satellite

cloud liquid water path observations every 15min will

accurately initialize individual thunderstorms within

the NEWS-e domain, resulting in POD values greater

than 0.7 and FAR values below 0.4 in NEWS-e 30-min

forecasts of composite reflectivity (Fig. 5).
d Critical success index scores of NEWS-e composite

reflectivity and updraft helicity forecasts decrease

through the entirety of the 3-h forecast time, indicat-

ing that forecast errors do not saturate during the

forecast period (Figs. 5 and 10).
d NEWS-e composite reflectivity forecasts are more

accurate than updraft helicity forecasts, with CSI

scores ;0.1 higher throughout the forecast period.

This reduced performance in updraft helicity forecasts

is primarily a result of overforecasting mesocyclone

occurrence (Fig. 10)
d Little difference in NEWS-e forecast skill is evi-

dent when considering updraft helicity in the 0–2- or

2–5-km vertical layers (Figs. 10 and 11), indicating that

NEWS-e horizontal grid spacing is too coarse to

FIG. 17. Scatterplots of the east–west and north–south centroid displacements (km) ofmatched objects for 30-min

NEWS-e forecasts of (a) composite reflectivity (dBZ) and (b) 2–5-km updraft helicity (m2 s22). Objects from 2016

(2017) are plotted in blue (orange), and the total number of objects for each year is listed in the bottom left. KDE

contours are overlain as in Fig. 16, and every third reflectivity object is plotted to improve clarity.
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resolve storm-scale processes responsible for the de-

velopment of low-level mesocyclones.

Additionally, the following differences are observed be-

tween varying system configurations, storm modes, and

storm environments:

d Improvement in composite reflectivity forecasts was

noted from 2016 to 2017 and primarily driven by a

lower FAR (Fig. 5). The improved performance is

attributable to upgrades to the HRRRE, which

provides a more accurate set of initial conditions to

NEWS-e and results in more accurate early forecasts

(Fig. 8) and to implementing the NSSL two-moment

microphysical parameterization, which reduces a posi-

tive frequency bias during the first hour of the forecasts

(Fig. 9).
d Updraft helicity forecasts during 2016 are more accu-

rate than those in 2017 during the first hour of forecast

time, with a higher POD and lower FAR (Fig. 10).

Inconsistent changes in CSI for 2017 cases rerun with

the Thompsonmicrophysics (Fig. 13), and a similar skill

to 2016 forecasts in 2017 cases with a primarily cellular

storm mode (Fig. 16), suggest that more skillful 2016

forecasts are driven by sampling differences between

the two years.
d There is tentative evidence that NEWS-e forecasts

perform better for larger and more intense storms, as

evidenced by larger and more intense reflectivity and

rotation track objects being more likely to be matched

to the observations (Fig. 16).

This study has demonstrated the utility of object-

based verification for providing a bulk assessment of

skill in Warn-on-Forecast guidance, comparing perfor-

mance across different cases and system configurations,

and providing information on specific forecast errors

through the examination of object diagnostic properties.

However, there aremany limitations to the object-based

approach for short-term, ensemble forecasts of thun-

derstorm hazards. Object-based verification is highly

customizable, with user-defined thresholds required for

object identification and matching (Davis et al. 2006a).

While this flexibility permits the application of object-

based verification to a wide variety of forecast problems,

caremust be taken to ensure that appropriate thresholds

are used for consistent object identification and match-

ing in different datasets, particularly for the verification

of rare events where small differences in the number of

objects identified can dramatically alter the verification

scores (Fig. 4). A limitation to the contingency-table-

based metrics employed here is that they only provide

measures of skill for deterministic forecasts. Future

work will incorporate additional metrics, such as the

Brier skill score and reliability diagrams (Wilks 2011), in

order to evaluate probabilistic NEWS-e guidance.

The primary limitation of object-based verification

specific to this study is in the limited sample diversity

across a relatively small number of available cases.

Though large numbers of objects are identified, the en-

semble and high-frequency nature of the NEWS-e

forecasts results in a strong correlation across fore-

cast objects, and variations in the model and observa-

tion climatologies complicate comparisons between

the 2016 and 2017 forecasts (Fig. 3). We expect that

more regular generation of real-time NEWS-e guid-

ance, as is planned in 2018, will provide a larger sample

size of cases and allow the baseline verification metrics

presented here to be refined. Additionally, expanded

computational resources will allow NEWS-e configu-

ration testing across a large sample of prior cases,

permitting hypothesis testing of forecast skill.

A final note is that while object-based verification of

thunderstorm guidance can provide useful bulk mea-

sures of forecast skill, it does not discriminate between

the intensities of the different thunderstorms. For

example, a marginally severe supercell producing a

weak rotation track object will influence the verification

scores as much as an object associated with a violent

tornado. Given the large numbers of thunderstorms

typically present within the NEWS-e domain (e.g.,

Figs. 6 and 14), changes in forecast quality for the most

significant storms for a given case may be masked by

changes to storms that produce limited impacts on life

and property. Therefore, future research will examine

methods for weighting the rotation track objects by

impact through incorporation of NWSwarning products

and local storm reports. The challenges associated with

the verification of cases producing multiple storms with

varying impacts underscore the importance of subjective

verification for the assessment of forecast skill in indi-

vidual case studies.

Acknowledgments. This research was funded by

NOAA’s Warn-on-Forecast project with additional

funding provided by the VORTEX-SE project through

Grant NA16OAR4320115. Partial funding for this re-

search was also provided by NOAA/Office of Oceanic

and Atmospheric Research under NOAA–University of

Oklahoma Cooperative Agreement NA11OAR4320072,

under the U.S. Department of Commerce. This paper

benefitted from thoughtful reviews by Dr. Burkely Gallo

and three anonymous reviewers, which greatly improved

the final draft. Drs. Adam Clark, Corey Potvin, and

Nusrat Yussouf provided many helpful conversations

over the course of this research, and Dr. Darrel Kingfield

and Karen Cooper are thanked for their assistance with

OCTOBER 2018 SK INNER ET AL . 1245



MRMS processing. All analyses and visualizations were

produced using the freely provided Anaconda Python

distribution and SciPy, Matplotlib, basemap, netcdf4,

sharppy, scikit-image, and scikit-learn libraries.

APPENDIX

Verification Score Sensitivity toObject Identification
and Matching Thresholds

The highly configurable nature of object-based veri-

fication measures results in sensitivities of skill scores

to user-defined thresholds. The impact of varying the

user-defined intensity threshold for object identification

and distance threshold for object matching is examined

in Figs. A1 and A2.

Variation of the intensity threshold for object identi-

fication does result in differences in the POD and FAR,

including changes in comparisons between scores for

2016 and 2017 forecasts (Fig. A1). However, the relative

score changes between 2016 and 2017 are attributable to

changes in the frequency bias, which produce contrast-

ing changes in POD and FAR that generally result in

little net change to the critical success index. An ex-

ception is applying the 2016 intensity threshold to the

FIG. A1. Time series of (left) POD, (center) FAR, and (right) CSI for NEWS-e 2–5-km rotation track forecasts. The intensity

threshold used to identify forecast and observed rotation track objects is varied between the (a)–(c) 99.95 percentile from each

year’s climatology (as in Fig. 7), (d)–(f) the 99.95 percentile from the 2017 climatology only, (g)–(i) the 99.95 percentile from

the 2016 climatology only, and (j)–(l) the 99.9 percentile from each year’s climatology. Individual ensemble member scores are

plotted in thin orange (blue) lines with thick orange (blue) lines representing the ensemble mean for the 2017 (2016) NEWS-e

forecasts.
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2017 forecasts (Figs. A1g–i). Using a lower value of

updraft helicity for object identification results in ap-

proximately 60 000 more rotation track objects in the

2017 forecasts that are predominately false alarms,

lowering the CSI scores throughout the forecast period.

This sensitivity illustrates the importance of consider-

ing model climatologies to define representative object

identification thresholds when comparing forecast

systems with different configurations. Small changes to

the percentile threshold produce little relative varia-

tion in skill scores between 2016 and 2017 (Figs. A1j–l),

and composite reflectivity forecasts are relatively in-

sensitive to changes in the object identification threshold

(not shown), likely owing to small differences between

the 2016 and 2017 climatologies below ;50 dBZ

(Fig. 3a).

As would be expected, increasing the distance

threshold for object matching results in corresponding

decreases to the FAR and increases to the POD and

CSI, particularly during the latter portions of the fore-

cast period (Fig. A2). However, there is little relative

change between the 2016 and 2017 forecasts in any

verification metric for either composite reflectivity or

rotation track forecasts.
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